\begin{eq}
\alpha\left(t\right)s(t)+n(t)
\end{eq}
where $\alpha\left(t\right)$ is the channel amplitude gain a random variable with Rayleigh distribution,; $s\left(t\right)$ is the modulated symbol, and $n\left(t\right)$ is the additive white Gaussian noise (AWGN).
\begin{eq}
E_s/N_0
\end{eq}
where the expectation operator is denoted by $\mathbb{E}\left(.\right)$, $E_s$ is the energy per modulated symbol, and $N_0$ is the noise power spectrum density.
Though the data rate can be displayed by $R=K/N$, where it represents the number of information bits sent in transmission of a binary symbol over the channel. Since generally $N>K$, we have $R<1$.
The text above was approved for publishing by the original author.
Previous
     
Next
Allez simplement dans votre boîte de réception, cliquez sur le lien de confirmation que nous vous avons envoyé, et vous obtiendrez alors texte corrigé en retour. Si vous souhaitez corriger plusieurs emails
Ou